Response Time – WAN Availability and QoS
3 min readResponse time is a measure of the time between a client user request and a response from the server host. An end user will be satisfied with a certain level of delay in response time. However, there is a limit to how long the user will wait. This amount of time can be measured and serves as a basis for future application response times. Users perceive the network communication in terms of how quickly the server returns the requested information and how fast the screen updates. Some applications, such as a request for an HTML web page, require short response times. On the other hand, a large FTP transfer might take awhile, but this is generally acceptable.
Throughput
In network communications, throughput is a measure of data transferred from one host to another in a given amount of time. Bandwidth-intensive applications have a greater impact on a network’s throughput than does interactive traffic such as a Telnet session. Most high-throughput applications involve some type of file-transfer activity. Because throughput-intensive applications have longer response times, you can usually schedule them when time-sensitive traffic volumes are lower, such as after hours.
Reliability
Reliability is a measure of a given application’s availability to its users. Some organizations require rock-solid application reliability, such as five nines (99.999%); this level of reliability has a higher price than most other applications. For example, financial and security exchange commissions require nearly 100% uptime for their applications. These types of networks are built with a large amount of physical and logical redundancy. It is important to ascertain the level of reliability needed for a network that you are designing. Reliability goes further than availability by measuring not only whether the service is there but whether it is performing as it should.
Bandwidth Considerations
Table 9-4 compares several WAN technologies in terms of speeds and media types.
Table 9-4 Physical Bandwidth Comparison
WAN Connectivity | Bandwidth: Up to 100 Mbps | Bandwidth: 1 Gbps to 10 Gbps |
Copper | Fast Ethernet | Gigabit Ethernet, 10 Gigabit Ethernet |
Fiber | Fast Ethernet | Gigabit Ethernet, 10 Gigabit Ethernet, SONET/SDH, dark fiber |
Wireless LTE/5G | 802.11a/g LTE/LTE Advanced | 802.11n/ac Wave1/Wave2 LTE Advance Pro/5G |
A WAN designer must engineer the network with enough bandwidth to support the needs of the users and applications that will use the network. How much bandwidth a network needs depends on the services and applications that will require network bandwidth. For example, VoIP requires more bandwidth than interactive Secure Shell (SSH) traffic. A large number of graphics or CAD drawings require an extensive amount of bandwidth compared to file or print sharing information being transferred on the network. A big driver in increasing demand for bandwidth is the expanded use of collaboration applications that utilize video interactively.
When designing bandwidth for a WAN, remember that implementation and recurring costs are important factors. It is best to begin planning for WAN capacity early. When the link utilization reaches around 50% to 60%, you should consider increases and closely monitor the capacity. When the link utilization reaches around 75%, immediate attention is required to avoid congestion problems and packet loss that will occur when the utilization nears full capacity.
QoS techniques become increasingly important when delay-sensitive traffic such as VoIP is using the limited bandwidth available on the WAN. LAN bandwidth, on the other hand, is generally inexpensive and plentiful; in the age of robust real-time applications, however, QoS can be necessary. To provide connectivity on the LAN, you typically need to be concerned only with hardware and implementation costs.